High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments
نویسندگان
چکیده
This paper investigates the steps necessary to achieve accurate simulations of flow over steep, mountainous terrain. Large-eddy simulations of flow in the Riviera Valley in the southern Swiss Alps are performed at horizontal resolutions as fine as 150 m using the Advanced Regional Prediction System. Comparisons are made with surface station and radiosonde measurements from the Mesoscale Alpine Programme (MAP)-Riviera project field campaign of 1999. Excellent agreement between simulations and observations is obtained, but only when high-resolution surface datasets are used and the nested grid configurations are carefully chosen. Simply increasing spatial resolution without incorporating improved surface data gives unsatisfactory results. The sensitivity of the results to initial soil moisture, land use data, grid resolution, topographic shading, and turbulence models is explored. Even with strong thermal forcing, the onset and magnitude of the upvalley winds are highly sensitive to surface processes in areas that are well outside the high-resolution domain. In particular, the soil moisture initialization on the 1-km grid is found to be crucial to the success of the finer-resolution predictions. High-resolution soil moisture and land use data on the 350-m-resolution grid also improve results. The use of topographic shading improves radiation curves during sunrise and sunset, but the effects on the overall flow are limited because of the strong lateral boundary forcing from the 1-km grid where terrain slopes are not well resolved. The influence of the turbulence closure is also limited because of strong lateral forcing and hence limited residence time of air inside the valley and because of the stable stratification, which limits turbulent stress to the lowest few hundred meters near the surface.
منابع مشابه
High-resolution Large-eddy Simulations of Flow in a Steep Alpine Valley. Part Ii: Flow Structure and Heat Budgets
This paper analyzes the three-dimensional flow structure and the heat budget in a typical medium-sized and steep Alpine valley, the Riviera Valley in southern Switzerland. Aircraft measurements from the MAP-Riviera field campaign reveal a very pronounced valley-wind system, including a strong curvature-induced secondary circulation in the southern valley entrance region. Accompanying radio soun...
متن کاملThe Nature of Turbulent Kinetic Energy in a Deep and Narrow Valley under Convective (?) Conditions
This contribution investigates the nature of turbulent kinetic energy (TKE) in a steep and narrow Alpine valley under fair-weather summertime conditions. The Riviera Valley in southern Switzerland has been chosen for a detailed case study, in which the evaluation of aircraft data (obtained from the MAP-Riviera field campaign) is combined with the application of high-resolution (350 m) large-edd...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006